An Improved Top-Hat Filter with Sloped Brim for Extracting Ground Points from Airborne Lidar Point Clouds
نویسندگان
چکیده
Airborne light detection and ranging (lidar) has become a powerful support for acquiring geospatial data in numerous geospatial applications and analyses. However, the process of extracting ground points accurately and effectively from raw point clouds remains a big challenge. This study presents an improved top-hat filter with a sloped brim to enhance the robustness of ground point extraction for complex objects and terrains. The top-hat transformation is executed and the elevation change intensity of the transitions between the obtained top-hats and outer brims is inspected to suppress the omission error caused by protruding terrain features. Finally, the nonground objects of complex structures, such as multilayer buildings, are identified by the brim filter that is extended outward. The performance of the proposed filter in various environments is evaluated using diverse datasets with difficult cases. The comparison of the proposed filter with the commercial software Terrasolid TerraScan and other popular filtering algorithms demonstrates the applicability and effectiveness of this filter. Experimental results show that the proposed filter has great promise in terms of its application in various types of landscapes. Abrupt terrain features with dramatic elevation changes are well preserved, and diverse objects with complicated shapes are effectively removed. This filter has minimal omission and OPEN ACCESS Remote Sens. 2014, 6 12886 commission error oscillation for different test areas and thus demonstrates a stable and reliable performance in diverse landscapes. In addition, the proposed algorithm has high computational efficiency because of its simple and efficient data structure and implementation.
منابع مشابه
Filtering Airborne Lidar Data by an Improved Morphological Method Based on Multi-gradient Analysis
The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR poi...
متن کاملExtraction of Building Boundary Lines from Airborne Lidar Point Clouds
Building boundary lines are important spatial features that characterize the topographic maps and three-dimensional (3D) city models. Airborne LiDAR Point clouds provide adequate 3D spatial information for building boundary mapping. However, information of boundary features contained in point clouds is implicit. This study focuses on developing an automatic algorithm of building boundary line e...
متن کاملBuilding Boundary Tracing and Regularization from Airborne Lidar Point Clouds
Building boundary is necessary for the real estate industry, flood management, and homeland security applications. The extraction of building boundary is also a crucial and difficult step towards generating city models. This study presents an approach to the tracing and regularization of building boundary from raw lidar point clouds. The process consists of a sequence of four steps: separate bu...
متن کاملAutomated Searching of Ground Points from Airborne Lidar Data Using a Climbing and Sliding Method
The extraction of a digital elevation model (DEM) from airborne lidar point clouds is an important task in the field of geoinformatics. In this paper, we describe a new automated scheme that utilizes the so-called “climbingand-sliding” method to search for ground points from lidar point clouds for DEM generation. The new method has the capability of performing a local search while preserving th...
متن کاملFiltering of Artifacts and Pavement Segmentation Frommobile Lidar Data
This paper presents an automatic method for filtering and segmenting 3D point clouds acquired from mobile LIDAR systems. Our approach exploits 3D information by using range images and several morphological operators. Firstly, a detection of artifacts is carried out in order to filter point clouds. The artifact detection is based on a Top-Hat of hole filling algorithm. Secondly, ground segmentat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014